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I. STEFAN PROBLEM OF A RADIALLY INWARDS FREEZING WATER DROP

To estimate the thickness of the ice shell at a particular time t after nucleation, we solve

the heat transfer problem of a water droplet that slowly freezes radially inwards. Consider

a spherical droplet of outer radius Ro which at time t has reached an ice shell of thickness

Ro − Ri(t), where Ri(t) is the radius of the liquid inclusion. The quasi-steady heat flow

through a spherical shell held at a temperature difference of ∆T = Ti − To is given by (see

e.g. [1])

qs = 4πk∆T
RoRi(t)

Ro −Ri(t)
, (S1)

where k ≈ 2 W/(m K) is the thermal conductivity of the ice shell. In our experiment the

estimation of qs is greatly facilitated by the fact that the temperature at both the inner and

outer shell surface is determined by a well defined phase equilibrium, ice-liquid and ice-vapor,

respectively. The ice-vapor buffer on the bottom of the chamber ensures that the vapor

pressure in the chamber stays approximately constant during the whole experiment (even

when the vacuum pump is kept on) so that ∆T is constant and equal to ∆T = Til−Tiv ≈ 7K.

This heat flow through the shell sets the rate at which latent heat Lm ≈ 330 kJ/kg is

released as the freezing front advances inwards (dRi/dt < 0):

qf = −4πρLmR
2
i

dRi

dt
, (S2)

where ρ ≈ 1000 kg/m3 is the density of water. For simplicity we neglected the 9% de-

crease in density associated with the liquid to ice phase transition and the slight decrease in

outer radius due to evaporation (to keep To = Tiv we have dRo/dRi = (Ri/Ro)
2(Lm/Ls) ≈

0.12(Ri/Ro)
2, where Ls ≈ 2840 kJ/kg is the latent heat of sublimation of ice). Setting

qs = qf , we find the following differential equation for Ri(t):

Ri
dRi

dt
= −k∆T

ρLm

Ro

Ro −Ri

. (S3)

By introducing R̃i = Ri/Ro and t̃ = t/τf , with the timescale

τf =
ρLmR

2
o

k∆T
, (S4)

this expression can be recast in an universal dimensionless form as:

R̃i
dR̃i

dt̃
= − 1

1 − R̃i

. (S5)

2



Using separation of variables and integrating once the solution to equation (S5) is readily

obtained as:
1

3
R̃3
i −

1

2
R̃2
i +

1

6
= t̃. (S6)

It is clear from this relation that the droplet will be completely frozen (R̃i = 0) at t̃ = 1/6.

II. ESTIMATION OF THE TIME TO EXPLOSION

The model for the thickening of the ice shell can be combined with the criteria for ex-

plosion (as derived in the main text) to obtain an estimate of the time it takes for droplet

to explode. A lower bound on the explosion time can be obtained by (numerically) finding

the ratio Ri/Ro for which the stored elastic energy, Ee = (1/2)ViP
2
i /K, at the moment of

crack formation exceeds the energy, Eγ = 2πγR2
i , required to create the fresh liquid-vapor

interface (for a given droplet size Ro). This minimum shell thickness then serves as input

for the freezing model to obtain the corresponding minimal time to explosion. An upper

bound is given by the time t = τf/6 for the droplet to freeze completely.

In Fig. S1 the results of this calculation are compared to experimental explosion times.

Although the precise explosion time for each drop is random in nature, it is clear that the

droplets did indeed always explode within the predicted time frame. In fact, with a few

exceptions the explosions occur before or near the time for which the stored elastic energy

reaches an optimum, i.e. when Ri/Ro ≈ 0.57 (dashed line in Fig. S1).

[1] A. Bejan, Heat transfer (Wiley, 1993).
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FIG. S1. Explosion time as a function of the outer droplet radius Ro. The upper solid line shows

the theoretical upper bound given by the total freezing time τf/6. The lower solid line represents

the theoretical lower bound given by the time it takes for the shell to reach a thickness for which

sufficient internal pressure can build up. The dashed line indicates the time at which the bursting

is expected to be the most energetic. Orange dots represent our experimental observations. The

inset shows a zoomed in-region near the origin, highlighting the predicted inhibition of ice drop

explosions below a critical radius of about 50 micron (vertical dashed line).
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